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Antibiotics are considered one of the most important contributions to clinical medicine 
in the last century. Due to the use and overuse of these drugs, there have been increasing 
frequencies of infections with resistant pathogens. One form of resistance, heterore-
sistance, is particularly problematic; pathogens appear sensitive to a drug by common 
susceptibility tests. However, upon exposure to the antibiotic, resistance rapidly ascends, 
and treatment fails. To quantitatively explore the processes contributing to the emer-
gence and ascent of resistance during treatment and the waning of resistance following 
cessation of treatment, we develop two distinct mathematical and computer-simulation 
models of heteroresistance. In our analysis of the properties of these models, we con-
sider the factors that determine the response to antibiotic-mediated selection. In one 
model, heteroresistance is progressive, with each resistant state sequentially generating 
a higher resistance level. In the other model, heteroresistance is non-progressive, with 
a susceptible population directly generating populations with different resistance lev-
els. The conditions where resistance will ascend in the progressive model are narrower 
than those of the non-progressive model. The rates of reversion from the resistant to 
the sensitive states are critically dependent on the transition rates and the fitness cost 
of resistance. Our results demonstrate that the standard test used to identify heterore-
sistance is insufficient. The predictions of our models are consistent with empirical 
results. Our results demand a reevaluation of the definition and criteria employed to 
identify heteroresistance. We recommend that the definition of heteroresistance should 
include a consideration of the rate of return to susceptibility.

microbiology | heteroresistance | antibiotic resistance | pharmacodynamics |  
mathematical modeling

Pathogens resistant to existing antibiotics are a significant and increasing source of mor­
bidity and mortality for humans and domestic animals (1, 2). Fundamental to the effective 
treatment of bacterial infections is choosing an antibiotic to which the pathogen is sus­
ceptible. The level of susceptibility is readily estimated by culture methods, both through 
automation via BioMerieux’s VITEK and similar devices (3–6) as well as by nonautomated 
methods such as disk diffusion and Epsilon-diffusion tests (7, 8). By these methods, 
bacteria are classified as susceptible, intermediate, or resistant according to the international 
consensus guidelines from the Clinical and Laboratory Standards Institute (CLSI) and 
the European Committee on Antimicrobial Susceptibility Testing (EUCAST). These cat­
egorical descriptions determine whether an antibiotic will or will not be used for treatment. 
If an isolate appears susceptible to an antibiotic by these criteria, the drug would be 
presumed to be effective in treating infections with that pathogen. These in vitro suscep­
tibility estimates are not sufficient as measures of antibiotic susceptibility if the treated 
bacteria are heteroresistant to that drug.

A population of bacteria which is heteroresistant often appears susceptible to an anti­
biotic as assessed by the standard methods described above but quickly becomes resistant 
upon confrontation with that drug due to the selection for and ascent of minority-resistant 
populations. Heteroresistance (HR) is typically defined in an operational manner by the 
presence of one or more subpopulations at a frequency greater than 10−7 with a resistance 
level that crosses the breakpoint at or greater than 8 times the susceptible main population 
(9). The canonical test for the presence of these subpopulations, and thus for HR, is a 
Population Analysis Profile (PAP) test (10, 11). This protocol tests for bacterial growth at 
different concentrations of an antibiotic, thus revealing the presence or absence of resistant 
subpopulations.

HR is clinically and epidemiologically problematic due to the inherent instability of 
resistance. Within short order of the removal of the antibiotic, heteroresistant populations 
once again appear susceptible to the treating antibiotic by conventional testing procedures. 
This effect is most profound when considering the transmission of heteroresistant populations 
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between individuals. Patients with heteroresistant infections trans­
mit these seemingly antibiotic-susceptible bacteria to other patients, 
who may then fail treatment with the drug for which the bacteria 
are heteroresistant. This instability of resistance is intrinsic to HR 
but is not currently part of the definition and thus is considered in 
few reports of HR (12).

In this report, we develop and analyze the properties of two 
mathematical and computer-simulation models that represent two 
extreme cases of HR, which we call progressive and non-progressive. 
Using these models, we explore the pharmaco- and population 
dynamic processes responsible for HR and the factors which con­
tribute to the instability of HR. The parameters of these models 
can be estimated, and the hypotheses generated therefrom tested 
and rejected in vitro and in vivo.

Results

Models of Heteroresistance. We open this consideration of the 
pharmaco- and population dynamics of HR with a description 
of the two mathematical models employed. For both models of 
HR, we assume a Hill function for the relationship between the 
concentration of the antibiotic, the concentration of the limiting 
resource, and the rates of growth and death of the bacteria, known 
as the pharmacodynamics (13–15).
Pharmacodynamics. In accord with the Hill function, the net 
growth of bacteria exposed to a given antibiotic concentration 
is given by Eq. 1.

	 [1]

where A in µg/mL is the antibiotic concentration, and r in µg/mL 
is the concentration of the resource which limits the growth of the 
population. vMAXi is the maximum growth rate in cells per hour 
of the bacteria of state i, where vMAXi > 0. vMINi is the minimum 
growth rate per cell per hour, which is the maximum death rate 
when exposed to the antibiotic, where vMINi < 0. MICi (which is 
>0) is the minimum inhibitory concentration of the antibiotic for 
the bacteria of state i in µg/mL. κi is the Hill coefficient for bacteria 
of state i. The greater the value of κi, the more acute the function. 
The Monod function (15), �(r) = r ∕(r + k) , is the rate of growth 
in the absence of the antibiotic, where k is the resource concentra­
tion in µg/mL when the growth rate is half of its maximum value. 
�(r) measures the physiological state of the bacteria; as the resource 
concentration declines, the cells grow slower. We show in 
SI Appendix, Fig. S1 the Hill functions for four different bacterial 
populations with varying MICs and maximum growth rates.
Diagrams of the heteroresistance models. The two models of HR 
used here are depicted in Fig. 1. In the progressive model (Fig. 1A), 
the increasingly resistant states are generated by a transition 
from a less resistant state to a more resistant state, and the more 
resistant states generate the less resistant states sequentially. In 
the non-progressive model (Fig. 1B), the different resistant states 
are generated directly by a transition from the susceptible state, 
and the more resistant states transition directly back to the most 
sensitive state.
The progressive model. In this model (Fig.  1A), the bacteria 
transition between four different states: sensitive, S, and increa­
singly resistant, R1, R2, and R3, which are the designations and 
densities in cells per mL of bacteria of these different states. The 
total number of cells in a state is given by the product of the 
density of the state and the total volume, Vol. Cells of the S state 

transition to R1, R1 transitions to R2, and R2 transitions to R3 
at rates µS1, µR12, and µR23 per cell per hour, respectively. Cells of 
resistant states progressively transition to the less resistant states, 
R3 to R2, R2 to R1, and R1 to S, with rates µR32, µR21, and µR1S per 
cell per hour. We simulate these transitions with a Monte Carlo 
process to account for the stochasticity that occurs during cell 
division related to either gene amplification or a point mutation at 
a specific locus due to the polymerase error rate (16). In this Monte 
Carlo process, a pseudorandom number x (0 ≤ x ≤1) is generated 
from a rectangular distribution (17). If x is less than the product 
of the total number of cells in the generating state, the transition 
rate (µ), the Monod function ( �(r)   ), and the step size (dt) of 
the Euler method (18) employed for solving differential equation, 
then 1/(dt*Vol) cells are added to the recipient population and 
removed from the generating population. In the equations below, 
the transition of cells due to this process is expressed as MIJ, e.g., 
MR1S for transitions from R1 to S and MR21 for transitions 
from R2 to R1. For example, if S is 105, µSR1 is 10−7, dt is 10−4, 
Vol is 1, and x < S*µSR1*dt*Vol* �(r)   , which in this case is 10−6* 
�(r)   , then 1/(dt*Vol) cells are removed from the S population and 
added to the R1 population, which in this case would mean that 
MSR1 is 104 cells. Practically, when MSR1 is plugged into the 
differential equations below, it means that for any given step of the 
Euler method from t to t + dt we add (1/(dt*Vol))*dt cells, so here, 
there would be one cell added. In this model the assumption that 
there are 1 sensitive and 3 resistant states is arbitrary, but in reality, 
there could be more or fewer states depending on the mechanism 
of HR. In the simulations presented in the main text, we assume 
the transition rates between states are equal in both directions and 
between states. We also assume that the transitions between states 
slow down with the decline in the physiological state of the cells 
in direct proportion to �(r)   . With these definitions, assumptions, 

Πi(r ,A) =

⎛
⎜⎜⎜⎝
νMAXi −

⎡
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νMAXi − νMINi

�
⋅

�
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MICi

��i

�
A
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��i

−
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Fig. 1.   Diagram of the two models of HR. S (black) is the most antibiotic-
sensitive state and the state with the highest fitness. We assume that the 
level of antibiotic resistance increases as the fitness decreases from state R1 
(blue) to R2 (green) to R3 (red). Transitions occur between states at potentially 
different rates of μ (where μij is the transition from i to j). Panel (A) is a diagram 
of the progressive model, and panel (B) is a diagram of the non-progressive 
model.
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and the parameters defined and presented in SI Appendix, Table S1, 
the rates of change in the densities of the different populations 
are given by,

	 [2]

	 [3]

	 [4]

	 [5]

	 [6]

The non-progressive model. In this model (Fig. 1B), all the resistant 
states, R1, R2, and R3 are derived from the susceptible state and, 
by transition, return directly to the susceptible state, S. The rates 
of transition from state S are, respectively, µSR1, µSR2, and µSR3 per 
cell per hour. The rates of return to the susceptible state are µR1S, 
µR2S, and µR3S per cell per hour. The transitions between states 
are via a Monte Carlo process (16), using a routine like that for 
the progressive model. When transients from S to the different 
R states are generated (MSR1, MSR2, and MSR3), 1/(dt*Vol) 
are added to the R1, R2, and R3 populations and are removed 
from the S population. When transients from the R1, R2, and R3 
populations are generated (MR1S, MR2S, and MR3S), 1/(dt*Vol) 
are added to the S population and removed from the R1, R2, 
and R3 populations, respectively. Here, the primary assumption 
is that all resistant states are derived from and transition back to 
the sensitive state and we continue to assume there are four states 
with equal transition rates between them. With these definitions, 
assumptions, and the parameters defined and presented in 
SI Appendix, Table S1, the rates of change in the densities of the 
different populations are given by:

	 [7]

dr

dt
= − e ⋅ �(r) ⋅

(
�S ⋅ S + �1 ⋅ R1 + �2 ⋅ R2 + �3 ⋅ R3

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Rate of consumption of the limiting resource

,

dS

dt
= S ⋅ΠS (r ,A)

⏟⏞⏞⏞⏟⏞⏞⏞⏟

Growth of S

+ MR1S −MSR1
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

Monte Carlo Transitions

,

dR1

dt
= R1 ⋅ΠR1(r ,A)

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

Growth of R1

+ MSR1 +MR21 −MR12 −MR1S
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Monte Carlo Transitions

,

dR2

dt
= R2 ⋅ΠR2(r ,A)

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

Growth of R2

+ MR12 +MR32 −MR21 −MR23
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Monte carlo Transitions

,

dR3

dt
= R3 ⋅ΠR3(r ,A)

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

Growth of R3

+ MR23 −MR32
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

Monte carlo Transitions

.

dr

dt
= − e ⋅ �(r) ⋅

(
�S ⋅ S + �1 ⋅ R1 + �2 ⋅ R2 + �3 ⋅ R3

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Rate of consumption of the limiting resource

,

	 [8]
dS

dt
= S ⋅ΠS (r ,A)

⏟⏞⏞⏞⏟⏞⏞⏞⏟

Growth of S

− MSR1 −MSR2 −MSR3 +MR1S +MR2S +MR3S
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Monte Carlo Transitions

,

	 [9]
dR1

dt
= R1 ⋅ΠR1(r ,A)

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

Growth of R1

+ MSR1 −MR1S
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

Monte Carlo Transitions

,

	 [10]

	 [11]

Simulated Population Dynamics of Heteroresistance. Here, we 
consider the population dynamics of HR with the distributions of 
the different resistant states generated from single cells grown up to 
full densities for the progressive and non-progressive models with 
four transition rates (Fig. 2). We further consider a greater range 
of transition rates for the non-progressive model to determine the 
minimum rate for which we generate sufficiently large minority 
populations in SI Appendix, Fig. S2 A–C.

For the progressive model, only in the runs with the highest 
transition rates, µ = 10−2 and µ = 10−3 per cell per hour, is the 
subpopulation with the highest resistance level, R3, present. A 
very different situation obtains for the non-progressive model, as 
at every transition rate the R3 population is present. We also con­
sider the effect that the relative fitness cost of each state has on 
these stationary phase densities (SI Appendix, Fig. S3) and find 
modest differences in these distributions.

Using these same parameters for both models, another differ­
ence can be seen between the progressive and non-progressive 
models in the PAP tests of each (Fig. 3). For these PAP tests, we 
calculate the ratio of the number of cells generated at a particular 
antibiotic concentration compared to the number of cells present 
when there is no antibiotic [N(A)/N(0)] for 0, 1, 2, 4, 8, and 16 
times the MIC of the susceptible population.

The PAP test results anticipated from the progressive model are 
very different than those anticipated from the non-progressive model, 
two extreme HR cases. The presence of four subpopulations with 
different MICs is apparent from the PAP test of the progressive model 
with the parameters considered. For the non-progressive model, the 
differences in the relative densities of the subpopulations are too low 
to be detected by a PAP test performed in the lab. In general, the 
plateaus shown in Fig. 3 A and B are sharper and more dramatic than 
would be seen in the lab. This is a consequence of having only three 
resistant states. Moreover, using the standard HR criteria of having a 
subpopulation with an MIC of >8 times at a frequency of at least 10−7, 
the progressive model only meets these criteria at high transition rates 
(exceeding 10−4). On the other hand, the non-progressive model meets 
these criteria at transition rates as low as 10−7 (SI Appendix, Fig. S2D).

To explore how these models differ in their response to antibiotic 
treatment, we follow the changes in the densities and MICs of het­
eroresistant populations exposed to two antibiotic concentrations (5 
µg/mL and 10 µg/mL corresponding to 5× and 10× the MIC of the 
susceptible population) when µ = 10−2 and µ = 10−5 per cell per hour 
(SI Appendix, Fig. S4). We initiate these simulations with 1/100 of 
the stationary phase densities of the different states anticipated from 

dR2

dt
= R2 ⋅ΠR2(r ,A)

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

Growth of R2

+ MSR2 −MR2S
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

Monte Carlo Transitions

,

dR3

dt
= R3 ⋅ΠR3(r ,A)

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

Growth of R3

+ MSR3 −MR3S
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

Monte Carlo Transitions

.

the heteroresistant populations depicted in Fig. 2 A, D, H, and E 
for the progressive and non-progressive models of heteroresistance, 
respectively. In SI Appendix, Fig. S5, we consider the effect that the 
fitness cost of resistance has on these dynamics and find the effect 
modest at best, just slowing the response time to the antibiotic.D
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There are apparent differences in the bacterial response to anti­
biotics between the progressive and non-progressive models of HR. 
For both models, when µ = 10−2 per cell per hour, the R3 popula­
tion comes to dominate and the MIC increases to the maximum 

(15 µg/mL), though with the higher concentration of the drug, it 
takes longer for the R3 population to become dominant. With the 
lower transition rate of µ = 10−5 per cell per hour, at 5 µg/mL of 
antibiotic, the R2 population comes to dominate in the progressive 

Fig. 2.   Distribution of stationary phase densities when grown up from a single cell of S. Shown on the Left (A–D) are the means and SDs of the stationary phase 
densities of the S (black), R1 (blue), R2 (green), and R3 (red) populations from five independent runs with the progressive model with different transition rates,  
µ = 10−5, 10−4, 10−3 and 10−2 per cell per hour for (A–D), respectively. On the Right, (E–H) are the corresponding distributions for runs made with the non-progressive 
model with these respective transition rates.
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model and the R3 population remains minor. At this same transi­
tion rate and at 10 µg/mL, resistance does not evolve, and the 
bacterial populations are lost. In both cases, the MIC does increase 
but does not go to the maximum value. For these conditions, in 
the non-progressive model, subpopulations are always able to 
respond to the antibiotic and are never eliminated.

Upon removal of the antibiotic, the heteroresistant bacterial 
population reverts to the sensitive state. This reversion is the case 
for both the progressive and non-progressive models of HR con­
sidered here. To illustrate this and elucidate the relative contribu­
tions of the rates of transition between states and the fitness cost 
of resistance (as measured by the growth rates) to the dynamics 
and the time needed to restore susceptibility, we use serial transfer 
forms of the progressive and non-progressive versions of the HR 
models. In these simulations, the populations are grown for 24 h, 
diluted by a factor of 100, and fresh resources added. In Fig. 4, 
we present the results of simulations of the changes in the densities 
of the susceptible and resistant populations as well as the change 
in average MIC in serial transfer following the removal of the 
antibiotics. These serial transfer simulations were initiated with 
107 bacteria per mL of the highest resistance level, R3. We consider 
two major conditions: one where the fitness cost of resistance is 
high and another where the fitness cost of resistance is low. In 
SI Appendix, we consider the dynamics of reversion when a set of 
even higher fitness costs are used (SI Appendix, Fig. S6).

In the absence of antibiotics, the populations become increas­
ingly dominated by more susceptible populations for both the 
progressive and non-progressive models of HR. This change in 
the composition of the populations is also reflected in a decline 
in the average MIC, approaching the level of the susceptible pop­
ulation. With the same fitness parameter and transition rates 
between states, µ, the rate of return to the susceptible state is 
greater for the non-progressive model than the progressive model. 
For both models, the rate of return to the sensitive state is pro­
portional to the transition rate between states, µ, and the relative 
fitness cost of resistance. Notably, the new apparent equilibria 
obtained for both models differ substantially. In the progressive 
model, the most resistant populations are in continuous decline 
and will ultimately be lost or nearly so, while in the non-progressive 
model, all resistant populations are present at roughly equal fre­
quency and appear to be in equilibrium. Of note is the vast dif­
ference in the time needed for the susceptible population to come 
to dominate; we list these times in SI Appendix, Table S2.

Discussion

To elucidate the factors that govern the response of heteroresistant 
populations to antibiotics, we use mathematical and computer-
simulation models to explore quantitatively: i) the factors respon­
sible for generating the distribution of resistant subpopulations, 
ii) the response of heteroresistant populations to different concen­
trations of antibiotics, and iii) the amount of time required for an 
antibiotic-resistant heteroresistant population to become suscep­
tible again when the treating antibiotic is removed.

We consider two models of heteroresistance (HR), which we 
call progressive and non-progressive. In both models, there are 
one or more subpopulations with different levels of resistance. In 
the progressive model, the more susceptible state transitions 
sequentially to the more resistant states, which in turn transition 
back to the less resistant states in the same sequence. In the 
non-progressive model, the susceptible population transitions 
directly to all the resistant states from the susceptible state before 
transitioning back directly to the susceptible state. In both models, 
the transition rates between states and the relative fitness cost of 
being resistant determine the distribution of the resistant popu­
lations in the absence of and in response to antibiotics.

The difference in the distribution of resistant states between 
these models with the parameters used is apparent with a PAP test. 
With the progressive model, there are different resistance levels 
with distinct relative densities, which decline as the concentration 
of the antibiotic increases. With the non-progressive model, 
although there are multiple subpopulations with different levels 
of resistance, they likely would not appear as separate populations 
in a PAP test. The PAP test of the non-progressive HR looks more 
like that which would obtain with only two resistance levels, sen­
sitive and resistant. However, the PAP tests are insufficient to dif­
ferentiate the two models of HR, as there are conditions where 
non-progressive HR would look progressive (SI Appendix, Fig. S7).

The models are also distinct in how they respond to antibiotics. 
In the progressive model, if the drug concentration is above the 
MIC of any of the subpopulations and the transition rate is low, 
the most resistant population can fail to emerge and ascend; this 
is true even though the drug concentration is still less than the 
MIC of the most resistant population. With the non-progressive 
model, the highest level of resistance will always emerge, no matter 
the transition rate. There are also differences in the population 
dynamics of each model when the antibiotics are removed. In the 

Fig. 3.   PAP tests. The ratio of the density of the number of bacteria surviving at an antibiotic concentration relative to that surviving in the absence of the 
antibiotic for different transition rates. Black µ = 10−2, blue µ = 10−3, green µ = 10−4, and red µ = 10−5 per cell per hour. Panel (A) is the PAP test using the progressive 
model, and panel (B) is the PAP test using the non-progressive model.
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progressive model, the average MIC will return to that of the most 
susceptible population, and the most resistant populations will be 
lost. In contrast, in the non-progressive model, the average MIC 
will not decrease to that of the most susceptible population, and 
all the resistant subpopulations will remain present. One impli­
cation of this is when confronted with antibiotics, a heteroresistant 
population which is non-progressive will respond to the drugs 
more consistently and more rapidly than a progressive heterore­
sistant population.

The standard for detecting and defining a strain as heterore­
sistant is the PAP test which requires subpopulations to be more 
frequent than 10−7 and to have an MIC >8× that of the susceptible 
main population (9). These tests are cumbersome, costly, and are 
unlikely to be performed in clinical microbiology labs. Most crit­
ically, our results demonstrate that the PAP test is not sufficient to 
detect HR. There are conditions with the progressive and 
non-progressive models where populations would fail to meet the 
criteria set by the PAP test but would still survive confrontation 
with high doses of antibiotics—a false negative (SI Appendix, 
Fig. S2D). There are also conditions where stable resistance would 
meet the HR criteria set by the PAP test—a false positive 
(SI Appendix, Fig. S8). The resistance that occurs in SI Appendix, 
Fig. S8 is a canonical point mutation in rpoB which does not have 
a fitness cost and will not revert (19). Moreover, there are condi­
tions that would be called HR despite requiring thousands of hours 
to return to a sensitive MIC. These results point to both a failing 
of the PAP test and to the insufficiency of the operational definition 

of HR. To address the definitional issue, we recommend revisiting 
this operational definition to include the rate at which the MIC 
of potentially heteroresistant strains return to a susceptible MIC 
as proposed in our model to better capture the underlying biology 
of HR (12). This is especially important, as the epidemiological 
risk of HR is the rapid return to a seemingly sensitive state, and as 
demonstrated experimentally, this can happen in less than 50 gen­
erations for certain types of HR (12, 20, 21).

At this juncture, it is not clear how important HR is clinically even 
though animal experiments (22, 23) and some clinical studies suggest 
that it can increase the risk of persistent bacteremia, lead to longer 
hospital stays, and increase mortality (12). We argue that within a 
single infected individual, the distinction between the emergence of 
stable resistance and HR is manifest in the risk of treatment failure. 
With both mechanisms, antibiotics can select for the ascent of resist­
ant subpopulations which will result in reduced treatment efficacy or 
even treatment failure, likely leading clinicians to change the treating 
drug in both cases. This risk of treatment failure is probabilistic in 
HR, as it is in stable resistance, due to other factors not considered 
here such as the host’s immune system, the compartmental hetero­
geneity and the chronicity of infection, the total density of infecting 
bacteria, and the local antibiotic concentrations. Due to the combi­
nation of these factors, treatment of a heteroresistant strain with a 
drug for which it is heteroresistant, will not necessarily lead to treat­
ment failure. One distinction between HR and stable resistance is the 
rapid reversion of a heteroresistant population from a resistant to a 
susceptible state. This reversion has an additional clinical implication 

Fig. 4.   Response of the two heteroresistant models to the removal of antibiotics. Changes in the densities of the susceptible and resistant populations in the 
absence of the antibiotic and changes in the average MIC. S (black), R1 (blue), R2 (green), and R3 (red). Simulations with the high fitness cost were run for 1,200 h 
(50 d), while simulations with the low fitness cost were run for 4,800 h (200 d). A-H, predictions of the Progressive model. I-P, predictions of the Non-progressive 
model. A, C, E, G, I, K, M, and O are changes in the density of each bacterial population that occurs over time when the antibiotic is removed. B, D, F, H, J, L, N, and 
P are changes in the average MIC of each condition over time when the antibiotic is removed.
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when considering infection transmission between individuals. Should 
an individual be infected with bacteria that are stably resistant to a 
drug, that resistance would appear on an assay such as the VITEK, 
and the drug for which they are resistant would not be used. If that 
individual is infected with heteroresistant bacteria, it would initially 
appear sensitive to a treating drug, but resistance could rapidly ascend. 
Then if that individual passes the infection on to another individual, 
due to the transient nature of HR, that infection would once again 
appear susceptible to the drug and once again the wrong drug would 
be chosen to treat the infection.

Although this study is purely theoretical, the parameters used 
in these models can be estimated experimentally with different 
species of bacteria and antibiotics of different classes. The hypoth­
eses generated herein can be tested in vitro and, most importantly, 
can be rejected. There exists evidence supporting these two classes 
of HR, primarily in the form of PAP tests of known heteroresistant 
strains as exemplified by data shown in SI Appendix, Fig. S9. A key 
objective for future experimental work is to determine how the 
actual mechanisms that can generate an unstable heteroresistant 
phenotype relate to these theoretical models. At present, we know 
of two main mechanisms that can generate HR: i) alterations in 
copy number of resistance genes or their regulators by either tan­
dem amplifications and/or alterations in plasmid copy number 
(12, 20, 24, 25) and ii) regular point mutations that occur at a 
high frequency (20, 26–28). It is likely that mutational HR is best 
described by the non-progressive model where instability and rever­
sion to susceptibility is driven by compensatory mutations that 
concomitantly reduce the fitness costs of the resistance mutations 
and lead to the loss of resistance (29–31). For gene amplification 
mechanisms it is less clear which theoretical model best describes 
their behavior since these mechanisms could have properties com­
patible with either model alone or a combination of the two, 
depending on the actual mechanism by which the amplifications 
are formed and lost. Further experimental work is needed to clarify 
these points. Finally, an unstable and transient resistant minority 
population could potentially also be generated by other types of 
mechanisms than those presently identified, including inducible 
resistances, epigenetic changes, and gene conversion events (32).

While our models are agnostic to mechanism and to the under­
lying bacteria and antibiotic, ultimately, we are interested in and 
believe our results have clinical implications for the design and 
implementation of antibiotic treatment regimens. For example, in 
bacteria such as Escherichia coli, Klebsiella pneumoniae, Acinetobacter 
baumannii, and Staphylococcus aureus, mutations in genes involved 
in, for example, electron transport, cell wall biosynthesis, and two- 
component regulatory systems, can lead to resistance to colistin, 
gentamicin, oxacillin, daptomycin, and teicoplanin (18, 24–26, 33). 
These types of mutations, which are difficult to detect under stand­
ard susceptibility testing conditions, could lead to the rapid emer­
gence of resistance in vivo—which would be a type of non-progressive 
HR. Progressive HR also necessarily starts by single events which 
are not detectable in antibiotic susceptibility testing, but only reach 
clinically relevant levels of resistance after several events, as seen with 
stepwise gene amplifications of various genes conferring resistance 
to β-lactams, aminoglycosides, colistin, and tetracyclines (24–26, 
30). The impact of the reversion rate to the treatment of infected 
individuals is difficult to evaluate in acute infections. However, the 
importance of the reversion rate is critical for understanding the level 
of antibiotic resistance. In SI Appendix, Supplemental Text and 
Table S3, we provide examples of mechanisms across several drug 
classes that have been shown to or could hypothetically generate an 
HR phenotype, predict which model of HR would most accurately 
pertain, and discuss further clinical implications.

There are, of course, caveats to consider with our models. First, 
our models are not mechanistic and do not consider the genetic 
basis of progressive versus non-progressive HR, and, as mentioned 
above, there are likely cases where certain mechanisms (e.g., gene 
amplification) could look either progressive, non-progressive, or 
somewhere in between depending on their specific mechanistic 
properties. Second, our models only include three resistant states, 
and these resistant states either do not transition between each 
other (non-progressive) or transition sequentially (progressive)—
two extreme cases. Last, as with all pharmacodynamic studies, 
some elements have been neglected from these models, as men­
tioned previously, the host’s immune system and the compart­
mental heterogeneity of infection such as biofilms and abscesses, 
as well as variation in local antibiotic concentrations, all of which 
prohibit in vitro models and studies from making solid clinical 
predictions. All in all, a clear next step would be to test these 
predictions in vitro and then move to an in vivo model system. 
Crucially, we need to develop an understanding of how the defi­
nition of HR matches with the clinical implications, specifically 
considering the frequency and MIC cutoffs previously defined.

Materials and Methods

Numerical Solutions (Simulations). For our numerical analysis of the cou-
pled, ordered differential equations presented (Eqs. 2–11), we used Berkeley 
Madonna with the parameters presented in SI Appendix, Table S1. Copies of the 
Berkeley Madonna programs used for these simulations are available at https://
www.eclf.net. In the analysis of our simulations, to calculate average MIC, we take 
a weighted average of the MIC of each population.

Bacteria. Enterobacter cloacae Mu208 is a carbapenem-resistant isolate col-
lected by the Georgia Emerging Infections Program Multi-site Gram-negative 
Surveillance Initiative and described previously (23). Burkholderia cepacia 
complex isolate JC8 is a cystic fibrosis patient isolate collected by the Georgia 
Emerging Infections Program Multi-site Gram-negative Surveillance Initiative. 
E. coli MG1655 was obtained from the Levin Lab’s bacterial collection.

Rifampin PAP Tests. Single colonies of E. coli MG1655 were inoculated 
into 10 mL lysogeny broth (BD, Product #244610) and grown overnight at 
37 °C with shaking. Cultures were serially diluted in saline and all dilutions  
(100 to 10−7) plated on LB agar plates (BD, Product #244510) containing 0, 1, 
2, 4, 8, and 16 times the MIC of rifampin (Thermo Fisher, Product #J60836.03). 
Plates were grown at 37 °C for 48 h before the density of surviving colonies 
was estimated.

Burkholderia and Enterobacter PAP Tests. Single colonies of B. cepacia com-
plex isolate JC8 and E. cloacae Mu208 were inoculated into 1.5 mL Mueller–
Hinton broth (BD, Product #275730), and cultures were grown overnight at 37 °C 
with shaking. Cultures were serially diluted in phosphate-buffered saline, and 
10 µL of each dilution was spotted on Mueller–Hinton agar (BD, Product #225250) 
plates containing 0, 0·125, 0·25, 0·5, 1, 2, and 4 times the breakpoint concen-
tration of each antibiotic. Antibiotics used were ticarcillin disodium (BioVision, 
Product #B1536) with clavulanate potassium salt (Cayman Chemical Company, 
Procut #19456), amikacin sulfate (AstaTech, Product # 40003), colistin sulfate salt 
(Sigma-Aldrich, Product # C4461), and fosfomycin disodium salt (TCI America, 
Product # F0889). For Mu208 on fosfomycin, broth and agar included 25 µg/mL 
glucose-6-phosphate (Sigma-Aldrich, Product #10127647001). Plates were 
maintained at 37 °C overnight for Mu208 and for 36 to 60 h for JC8.

Data, Materials, and Software Availability. The Berkeley Madonna programs 
used for these simulations are available at https://www.ECLF.net (34). All other 
data are included in the manuscript and/or SI Appendix.
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